Skip to content

Comparison: LlamaIndex.TS vs Microsoft Agent Framework

Overview

This document provides a side-by-side comparison of the current LlamaIndex.TS orchestration implementation and the proposed Microsoft Agent Framework (MAF) implementation.

High-Level Comparison

AspectLlamaIndex.TS (Current)Microsoft Agent Framework (Proposed)
LanguageTypeScriptPython
RuntimeNode.js 22+Python 3.12+
Web FrameworkExpress.jsFastAPI
Package Managernpmpip/poetry
Agent FrameworkLlamaIndex.TS 0.10.3agent-framework (latest)
Multi-Agent SupportYesYes
Workflow SupportYesYes
LLM IntegrationMultiple providersAzure OpenAI, OpenAI
Tool CallingYesYes
StreamingSSE (Server-Sent Events)SSE (Server-Sent Events)
State ManagementBuilt-inBuilt-in
ObservabilityOpenTelemetryOpenTelemetry
CommunityGrowingNew, Microsoft-backed
DocumentationGoodEmerging
Azure IntegrationVia SDKsNative Azure AI integration

Code Comparison

Agent Definition

Using LlamaIndex.TS:

typescript
import { agent, multiAgent } from "llamaindex";
import { mcp } from "@llamaindex/tools";

// Create agent
const customerQueryAgent = agent({
  name: "CustomerQueryAgent",
  systemPrompt: "Assists employees in understanding customer needs.",
  tools: await mcp(mcpServerConfig.config).tools(),
  llm,
  verbose: false
});

Using Microsoft Agent Framework:

python
from agent_framework import Agent
from azure.ai.inference import ChatCompletionsClient

# Create agent
customer_query_agent = Agent(
    name="CustomerQueryAgent",
    system_prompt="Assists employees in understanding customer needs.",
    tools=[customer_query_tool],
    llm_client=llm_client,
    model=deployment_name
)

Multi-Agent Workflow

LlamaIndex.TS (Current):

typescript
// Create multi-agent workflow
const workflow = multiAgent({
  agents: agentsList,
  rootAgent: travelAgent,
  verbose: false
});

// Run workflow
for await (const event of workflow.run(message)) {
  console.log(event);
}

Microsoft Agent Framework (Proposed):

python
from agent_framework import Workflow

# Create workflow
workflow = Workflow(
    name="TravelPlanningWorkflow",
    agents=agents_list,
    root_agent=triage_agent
)

# Run workflow
async for event in workflow.run(message):
    print(event)

Tool Integration

With LlamaIndex.TS:

typescript
import { mcp } from "@llamaindex/tools";

// MCP tool configuration
const mcpServerConfig = {
  url: process.env.MCP_CUSTOMER_QUERY_URL + "/mcp",
  type: "http",
  verbose: true,
  useSSETransport: false
};

// Get tools from MCP server
const tools = await mcp(mcpServerConfig).tools();

With Microsoft Agent Framework:

python
from agent_framework import Tool
import httpx

# Create MCP client wrapper
async def call_customer_query_tool(query: str) -> dict:
    async with httpx.AsyncClient() as client:
        response = await client.post(
            f"{MCP_SERVER_URL}/mcp/call",
            json={"name": "analyze_query", "arguments": {"query": query}}
        )
        return response.json()

# Create tool
customer_query_tool = Tool(
    name="analyze_customer_query",
    description="Analyze customer query",
    function=call_customer_query_tool
)

API Endpoint

LlamaIndex.TS (Current):

typescript
import express from "express";

const apiRouter = express.Router();

apiRouter.post("/chat", async (req, res) => {
  const message = req.body.message;
  const tools = req.body.tools;
  
  res.setHeader("Content-Type", "text/event-stream");
  
  const agents = await setupAgents(tools);
  const context = agents.run(message);
  
  for await (const event of context) {
    const data = JSON.stringify(event);
    res.write(data + "\n\n");
  }
  
  res.end();
});

Microsoft Agent Framework (Proposed):

python
from fastapi import FastAPI
from sse_starlette import EventSourceResponse

app = FastAPI()

@app.post("/api/chat")
async def chat(request: dict):
    message = request.get("message")
    tools = request.get("tools", [])
    
    async def event_generator():
        async for event in workflow.run(message, selected_tools=tools):
            yield {
                "event": "message",
                "data": event.model_dump_json()
            }
    
    return EventSourceResponse(event_generator())

Configuration

LlamaIndex.TS (Current):

typescript
// .env configuration
const config = {
  azureOpenAIEndpoint: process.env.AZURE_OPENAI_ENDPOINT,
  azureOpenAIKey: process.env.AZURE_OPENAI_API_KEY,
  mcpServers: {
    customerQuery: process.env.MCP_CUSTOMER_QUERY_URL,
    // ...
  }
};

Microsoft Agent Framework (Proposed):

python
from pydantic_settings import BaseSettings

class Settings(BaseSettings):
    azure_openai_endpoint: str
    azure_openai_api_key: str
    mcp_customer_query_url: str
    # ...
    
    class Config:
        env_file = ".env"

settings = Settings()

Feature Comparison

Supported Features

FeatureLlamaIndex.TSMAFNotes
Multi-agent orchestrationBoth support well
Agent handoffSimilar patterns
Tool callingBoth support
Streaming responsesSSE in both
State managementBuilt-in support
Parallel executionVia async/await
Error handlingSimilar capabilities
OpenTelemetryBoth support
Azure integration✅✅MAF has native Azure AI
MCP protocolNeed custom integration
Type safetyTypeScript vs Pydantic
Hot reloadtsx vs uvicorn

✅ = Fully supported, ➖ = Requires custom implementation, ❌ = Not supported

Performance Characteristics

MetricLlamaIndex.TSMAF (Estimated)Notes
Startup time~2-3s~1-2sPython faster to start
Memory usage~150MB~100MBPython more efficient
Request latency~500ms~400msSimilar, depends on LLM
Concurrent requestsHighHighBoth async frameworks
Streaming overheadLowLowSSE in both
Tool call overheadLowMediumCustom MCP integration

Note: Performance metrics are estimates and should be validated through benchmarking.

Developer Experience

AspectLlamaIndex.TSMAFWinner
Learning curveMediumMediumTie
Type safetyStrongStrongTie
IDE supportExcellentExcellentTie
DebuggingGoodGoodTie
TestingGoodGoodTie
Hot reloadTie
Package ecosystemLarge (npm)Large (PyPI)Tie
DocumentationGoodEmergingLlamaIndex
Community supportGrowingNewLlamaIndex
Azure ecosystemGoodNativeMAF
AI/ML ecosystemGoodExcellentMAF

Migration Effort

Low Effort Items (Easy)

  1. Configuration management - Similar env-based config
  2. API structure - Express → FastAPI is straightforward
  3. SSE streaming - Similar implementation
  4. OpenTelemetry - Similar setup
  5. Environment variables - 1:1 mapping

Medium Effort Items

  1. Agent definitions - Similar but different syntax
  2. Workflow orchestration - Conceptually similar
  3. Error handling - Need to reimplement patterns
  4. State management - Different APIs
  5. Testing - Need to rewrite tests

High Effort Items (Complex)

  1. MCP client integration - Need custom implementation
  2. Tool wrapping - Different approach needed
  3. Deployment configuration - New Docker setup
  4. Documentation - Comprehensive rewrite needed
  5. Team training - Python vs TypeScript

Pros and Cons

LlamaIndex.TS (Current)

Pros:

  • ✅ Already implemented and working
  • ✅ Team familiar with TypeScript
  • ✅ Good documentation
  • ✅ Active community
  • ✅ MCP integration built-in
  • ✅ No migration risk
  • ✅ Proven in production

Cons:

  • ❌ Not native to Azure AI ecosystem
  • ❌ TypeScript for AI/ML less common
  • ❌ Limited Python ML library access
  • ❌ Smaller AI framework ecosystem

Microsoft Agent Framework (Proposed)

Pros:

  • ✅ Native Azure AI integration
  • ✅ Microsoft backing and support
  • ✅ Python AI/ML ecosystem
  • ✅ Modern agent architecture
  • ✅ Pydantic for type safety
  • ✅ FastAPI performance
  • ✅ Better Azure integration

Cons:

  • ❌ Migration effort required
  • ❌ New framework (less mature)
  • ❌ Custom MCP integration needed
  • ❌ Team needs Python skills
  • ❌ Migration risk
  • ❌ Emerging documentation
  • ❌ Smaller community

Decision Factors

When to Choose LlamaIndex.TS

  1. Team expertise: Team is primarily TypeScript-focused
  2. Stability: Need proven, stable solution
  3. Time constraints: Can't afford migration time
  4. MCP focus: Heavy reliance on MCP ecosystem
  5. Risk aversion: Want to avoid migration risks

When to Choose Microsoft Agent Framework

  1. Azure ecosystem: Deep Azure AI integration needed
  2. Python expertise: Team has Python AI/ML skills
  3. ML integration: Need Python ML libraries
  4. Long-term support: Want Microsoft backing
  5. Modern architecture: Want latest agent patterns
  6. Innovation: Willing to adopt emerging technology

Recommendation

Short-term (0-6 months)

Stick with LlamaIndex.TS if:

  • Current implementation is working well
  • No pressing issues with current architecture
  • Team bandwidth is limited
  • Migration risk is too high

Long-term (6-12+ months)

Consider MAF migration if:

  • Azure AI integration becomes critical
  • Python ML capabilities are needed
  • Microsoft support is valuable
  • Team can invest in migration
  • Modern agent architecture is desired

Hybrid Approach

Parallel deployment allows:

  • Test MAF without full commitment
  • Gradual migration of features
  • Risk mitigation through rollback
  • Performance comparison
  • Team skill building

Conclusion

Both LlamaIndex.TS and Microsoft Agent Framework are capable solutions for multi-agent orchestration. The choice depends on:

  1. Team expertise - TypeScript vs Python
  2. Ecosystem needs - npm vs PyPI, Node vs Python
  3. Azure integration - Nice-to-have vs critical
  4. Risk tolerance - Stable vs emerging
  5. Time horizon - Short-term vs long-term

For this project, we recommend:

  • Option 1: Continue with LlamaIndex.TS for stability
  • Option 2: Migrate to MAF for Azure AI integration
  • Option 3: Parallel deployment for gradual transition ✅ (Recommended)

The parallel deployment approach provides the best of both worlds: maintain stability while exploring new capabilities.

Next Steps

If proceeding with MAF:

  1. Review MAF Orchestration Design
  2. Follow MAF Implementation Guide
  3. Execute MAF Migration Plan
  4. Use MAF Quick Reference for development

If staying with LlamaIndex.TS:

  1. Continue current development
  2. Monitor MAF maturity
  3. Reevaluate in 6 months
  4. Keep migration option open

Resources


Last updated: 2025-01-02