[bookmark: _GoBack]Contoso Insurance Code Sample
Component List
This table lists all the Azure components used in the code sample and describes what they are used for.

	Type
	Name
	Sub Components
	Description

	
	
	Type
	Name
	

	SQL server
	contosoinsurance
	SQL Database
	MobileClaims
	Mobile Claims Database the mobile application interacts with.

	
	
	SQL Database
	CRMClaims
	CRM Claims Database everything but the mobile app interacts with.

	Storage account
	contosoinsurancestorage
	

Blobs
	other-party-plate-images
	Container to store other party license plate images

	
	
	
	other-party-card-images
	Container to store other party insurance card images

	
	
	
	other-party-license-images
	Container to store other part driver’s license images

	
	
	
	vehicle-images
	Container to store the customer’s vehicle images

	
	
	
	claim-images
	Container to store claim images

	
	
	Queues
	mobile-claims
	MobileClaim Queue

	
	
	
	new-claims
	NewClaimForApproval Queue

	App Service
	contosoinsurance
	Web App
	
	MVC 5 App used for Claims Adjusters

	
	contosoinsurance-api
	Web API
	SubmitClaimForProcessing
	Custom API for the mobile App:
Writes to DB, when write is done, then writes to MobileClaim Queue.

	
	
	Web API
	
	TableControllers for the Mobile App

	Function App
	contosoinsurance-function
	Function
	HandleMobileClaim
	Triggers on mobile-claims queue and writes to CRM Claims SQL database and new-claims queue, removes item from mobile-claims queue. Returns current claim and other party from CRM Claims SQL database. Calls OCR to process license plate, driver’s license, and insurance card other party images. Updates the current claim and other party in CRM Claims SQL database with the data returned from the OCR process.

	
	
	
	HandleNewClaim
	Triggers on new-claims queue and invokes Logic App, removes items from new-claims queue.

	
	
	
	HandleManualClaim
	Invoked by the ContosoClaimManualApprover Logic app to update the CRM Claims SQL database.

	
	
	
	AutoApproveClaim
	Invoked by the HandleNewClaim Azure Function. Queries the CRM Claims SQL database and looks to see if the current customer has submitted a claim before. If no previous claims are found for the current customer, then auto approves the claim. If previous claims are found for the current customer, then does not auto approve the claim.

	
	
	
	Shared
	Contains the common csx files.

	
	
	
	
	When a claim is manually approved or rejected the CRM Claims Database is updated and an email and push notification is sent to the customer.

	Logic App

	ContosoInsuranceClaimAutoApprover
	
	
	See the description for this Logic App below.

	
	ContosoInsuranceClaimManualApprover
	
	
	See the description for this Logic App below.

	Application Insights
	ContosoInsurance
	
	
	

	Notification Hub
	ContosoClaimApprovedNotification
	
	
	

	
	Created
	
	Not Created (Coming in Subsequent Phase)

Logic Apps
This section illustrates the Logic Apps used in the code sample.
ContosoInsuranceClaimAutoApprover
This logic app auto approves or rejects claims. See the Src\Contoso Insurance.vsdx Visio diagram to see where it fits into the entire process.
[image: C:\Users\topsh\AppData\Local\Microsoft\Windows\INetCacheContent.Word\ContosoClaimAutoApprover-LogicApp.png]
ContosoInsuranceClaimManualApprover
This logic app handles manually approved claims. See the Src\Contoso Insurance.vsdx Visio diagram to see where it fits into the entire process.
[image: C:\Users\topsh\AppData\Local\Microsoft\Windows\INetCacheContent.Word\ContosoClaimManualApprover-LogicApp.png]
Mobile Claims Database
The mobile app interacts with the Mobile Claims database. These tables document the database schema and describe all of the columns.
Claims Table
	Column
	Type
	Description

	Id
	nvarchar
	Primary key for this table auto-generated by mobile app

	Description
	nvarchar
	Description of incident entered in mobile app

	DateTime
	datetime
	Date and time the incident occurred auto-generated by mobile app

	Coordinates
	geography
	GPS coordinates where incident occurred auto-generated by mobile app based on current GPS location

	Vehicle Id
	int
	The Id of the vehicle selected in mobile app

	OtherPartyMobilePhone
	
	The mobile phone number entered into the mobile app.

CustomerVehicles Table
	Column
	Type
	Description

	Id
	nvarchar
	Primary key for this table

	UserId
	nvarchar
	Pre-populated from a SQL Script to seed the demo data

	LicensePlate
	nvarchar
	Pre-populated from a SQL Script to seed the demo data

	VIN
	nvarchar
	Pre-populated from a SQL Script to seed the demo data

	Vehicle Id
	int
	Foreign key to Claims table

CRM Claims Database
Everything but the mobile app interacts with the CRM Claims database. These tables document the database schema and describe all of the columns.
Claims Table
	Column
	Type
	Description

	Id
	int
	Primary key for this table auto-generated by mobile app

	Description
	nvarchar
	Description of incident entered in mobile app

	DateTime
	datetime
	Date and time the incident occurred auto-generated by mobile app

	Coordinates
	geography
	GPS coordinates where incident occurred auto-generated by mobile app based on current GPS location

	Correlation Id
	uniqueidentifier
	Correlation Id auto-generated by mobile app

	Status
	int
	Used to track status of the incident. Possible status values include: Submitted, Auto Approved, Auto Rejected, Manual Approved, Manual Rejected

	CustomerId
	int
	Foreign key to Customer table

	Type
	nvarchar
	Always set to the value Automobile for this phase of the demo

	DueDate
	date
	Calculated – Use Date column above and add 1 week

	DamageAssessment
	int
	Set by the web app. Choices include: Severe, Moderate, Minimal

	Correlation Id
	uniqueidentifier
	Correlation Id auto-generated by mobile app

	Vehicle Id
	int
	The Id of the vehicle selected in mobile app

	OtherPartyId
	int
	Foreign key to OtherParties table

ClaimImages Table
	Column
	Type
	Description

	Id
	int
	Primary key for this table

	ClaimId
	nvarchar
	Foreign key to Claim table

	ImageUrl
	nvarchar
	URL to blob image in claim-images container

Customers Table
	Column
	Type
	Description

	Id
	int
	Primary key for this table

	FirstName
	nvarchar
	Pre-populated from a SQL Script to seed the demo data

	LastName
	nvarchar
	Pre-populated from a SQL Script to seed the demo data

	Street
	nvarchar
	Pre-populated from a SQL Script to seed the demo data

	City
	nvarchar
	Pre-populated from a SQL Script to seed the demo data

	State
	nvarchar
	Pre-populated from a SQL Script to seed the demo data

	Zip
	nvarchar
	Pre-populated from a SQL Script to seed the demo data

	DOB
	date
	Pre-populated from a SQL Script to seed the demo data

	Email
	nvarchar
	Pre-populated from a SQL Script to seed the demo data

	PolicyStart
	date
	Pre-populated from a SQL Script to seed the demo data

	PolicyEnd
	date
	Pre-populated from a SQL Script to seed the demo data

	PolicyId
	nvarchar
	Pre-populated from a SQL Script to seed the demo data

	DriversLicenseNumber
	nvarchar
	Pre-populated from a SQL Script to seed the demo data

	MobilePhone
	Nvarchar
	Pre-populated from a SQL Script to seed the demo data

CustomerVehicles Table
	Column
	Type
	Description

	Id
	nvarchar
	Primary key for this table

	CustomerId
	int
	Foreign key to Customer table

	LicensePlate
	nvarchar
	Pre-populated from a SQL Script to seed the demo data

	VIN
	nvarchar
	Pre-populated from a SQL Script to seed the demo data

OtherParties Table
	Column
	Type
	Description

	Id
	int
	Primary key for this table

	FirstName
	nvarchar
	Obtained from OCR of the Driver’s License submitted from the mobile app

	LastName
	nvarchar
	Obtained from OCR of the Driver’s License submitted from the mobile app

	Street
	nvarchar
	Obtained from OCR of the Driver’s License submitted from the mobile app

	City
	nvarchar
	Obtained from OCR of the Driver’s License submitted from the mobile app

	State
	nvarchar
	Obtained from OCR of the Driver’s License submitted from the mobile app

	Zip
	nvarchar
	Obtained from OCR of the Driver’s License submitted from the mobile app

	DOB
	date
	Obtained from OCR of the Driver’s License submitted from the mobile app

	PolicyStart
	date
	Obtained from OCR of the Insurance Card submitted from the mobile app

	PolicyEnd
	date
	Obtained from OCR of the Insurance Card submitted from the mobile app

	PolicyId
	nvarchar
	Obtained from OCR of the Insurance Card submitted from the mobile app

	DriversLicenseNumber
	nvarchar
	Obtained from OCR of the Driver’s License submitted from the mobile app

	LicensePlate
	nvarchar
	Obtained from OCR of the License Plate submitted from the mobile app

	VIN
	nvarchar
	Obtained from OCR of the Insurance Card submitted from the mobile app

	MobilePhone
	Nvarchar
	Mobile phone number entered in mobile app

	LicensePlateImageUrl
	nvarchar
	URL to blob image from the mobile app

	InsuranceCardImageUrl
	nvarchar
	URL to blob image from the mobile app

	DriversLicenseImageUrl
	nvarchar
	URL to blob image from the mobile app

Application Insights Status Logging Matrix
This table describes all of the Custom Events and their associated metrics that are logged to Application Insights.
	Log Type
	Log Name
(Event Name in Application Insights)
	Metric
	Metric Value
	Host
	Alert ID
	AlertName
	Triggers/Events
	Logged Content
<<description>> placeholder is the text in the Trigger/Event Column.
	Version

	Status Log
	Mobile App Status
	Mobile App
	0
	Null

	Null

	Null
	Vehicles synched with SQL server

Claims synched with SQL server

Claim submitted to REST API

Images submitted to blob storage

Operation <<Success/Failure>>
	<<Date and Time Stamp (in milliseconds)>> --
<<description>> --
Status: <<operation status [Success/Failure]>> --
Version: <<version>>

	Programmatically return the AssemblyFileVersion from the AssemblyInfo.cs file.

	Status Log
	REST API Status
	REST API
	0
	Web Server Host Name

	Null

	Null
	Claim received from mobile app

Claim submitted to mobile-claims queue
	<<Date and Time Stamp (in milliseconds)>> --
<<description>> --
Status: <<operation status [Success/Failure]>> --
Version: <<version>>
	Programmatically return the AssemblyFileVersion from the AssemblyInfo.cs file.

	Status Log
	Azure Function Status
	Azure Function
	0
	To be determined. I am asking MS.

	Null

	Null
	Data queried from <Database Name> SQL Database

Data inserted into <Database Name> SQL Database

Data updated into <Database Name> SQL Database

Data deleted from <Database Name> SQL Database

Function triggered by <<queue name>> queue

Invoked ContosoClaimAutoApprover Azure Function

<Image Type> OCR Started

<Image Type> OCR Complete

Claim Manually Approved

Claim Manually Rejected
	<<Date and Time Stamp (in milliseconds)>> --
<<Function Name>> --
<<description>> --
Status: <<operation status [Success/Failure]>> --
Version: <<version>>

	The app setting to log is FUNCTIONS_EXTENSION_VERSION. It will look something like ~0.x.

In code, use ConfigurationManager.AppSettings["FUNCTIONS_EXTENSION_VERSION"]

	Status Log
	Logic App Status
	Logic App
	0
	To be determined. I am asking MS.

	Null

	Null
	Auto Approval Started

Claim Auto Approved

Claim Auto Rejected

Auto Approval Complete

<<Claim Status>> Email Sent to <<email address>>
	<<Date and Time Stamp (in milliseconds)>> --
<<Logic App Step Name>> --
<<description>> --
Status: <<operation status [Success/Failure]>> --
Version: <<version>>

	Logic Apps have a workflow function to use for this - @workflow It looks like this:

{
 "id": "/subscriptions/5250dd92-b580-46be-b327-e6596c8de196/resourceGroups/sw-centralus-group/providers/Microsoft.Logic/workflows/sw-test0531v3",
 "name": "sw-test0531v3",
 "type": "Microsoft.Logic/workflows",
 "location": "centralus",
 "run": {
 "id": "/subscriptions/5250dd92-b580-46be-b327-e6596c8de196/resourceGroups/sw-centralus-group/providers/Microsoft.Logic/workflows/sw-test0531v3/runs/08587355927049355855",
 "name": "08587355927049355855",
 "type": "Microsoft.Logic/workflows/runs"
 }
}

So you could say in a field @workflow()[‘run’][‘name’] to generate the current run name.

	Status Log
	Web App Status
	Web App
	0
	Web Server Host Name

	Null

	Null
	Data queried from <Database Name> SQL Database

Invoked ContosoClaimManualApprover Azure Function
	<<Date and Time Stamp (in milliseconds)>> --
<<description>> --
Status: <<operation status [Success/Failure]>> --
Version: <<version>>

	Programmatically return the AssemblyFileVersion from the AssemblyInfo.cs file.

User Matrix
This table lists all of the users in the demo.
	Role
	User Full Name
	Email Address

	Customer
	The Microsoft Account (customer) you use to log into the mobile app.

	Other Party
	Ron Gabel
	Names of the other party actors that OCR images have been provided for. These images are located in the Src/Images/ Mobile App OCR Images directory. You upload these images in the mobile app. See the /Src/Demo Script.pptx file for more details.

	Other Party
	Rob Barker
	

	Other Party
	Alisa Lawyer
	

	Other Party
	Janice Galvin
	

	Claims Adjuster
	Katie Jordan
	An account you create in the same tenancy where you deploy the sample. See the README for more details about this account.

You can find the pictures for these users in the Src/Images/User Pictures folder in the GitHub repository.
Email Matrix
This section defines the content for the emails sent by the system.
Emails
	Event
	To
	Subject
	Body

	Logic App Does Not Auto Approve Claim
	Claims Adjuster
	Claim Pending Review
	See Email 1 Below

	Logic App Auto Approves Claim
	Customer
	Claim Automatically Approved
	See Email 2 Below

	Claims Adjuster Manually Rejects Claims
	Customer
	Claim Rejected
	See Email 3 Below

	Claims Approver Manually Approves Claim
	Customer
	Claim Approved
	See Email 4 Below

Email 1
Claim number <Claim ID> was not auto approved. Please review the claim and approve or reject it.
<Link to claim details page in web app>
Email 2
Hello <Customer Name>,
The claim you recently submitted was automatically approved. You can proceed to schedule repairs. If you have any questions, please contact your agent.
Claim number: <Claim ID>
Email 3
Hello <Customer Name>,
The claim you recently submitted was not approved by the claims adjuster. If you have any questions, please contact your agent.
Claim number: <Claim ID>
Email 4
Hello <Customer Name>,
The claim you recently submitted was manually approved. You can proceed to schedule repairs. If you have any questions, please contact your agent.
Claim number: <Claim ID>
image1.png
Whel HTTP request is received
<&> AutoApproveClaim
E Is claim auto approved eee

Body *

is equal to h

Approved

Edit in advanced mode Collapse condition

IF YES

I:l Send an email to the customer coo

f Add an action | « « + More

image2.png
L3

When an HTTP request is received

<’> HandleManualClaim een

CONDITION

@bool (triggerBody()[approved'])

Collapse condition

IF YES

I:l Send an email coo

f Add an action | « « + More

IFNO

Send an email 2

f Add an action

«++ More

